Files
addr2line
adler
aho_corasick
ansi_term
atty
backtrace
base64
bincode
bitflags
bitmaps
bstr
byteorder
bytes
bytesize
cargo
cargo_platform
cfg_if
chrono
clap
color_backtrace
corpus_database
corpus_database_dsl
corpus_extractor
corpus_manager
corpus_manager_driver
corpus_queries_derive
corpus_queries_impl
crates_index
crates_io
crc32fast
crossbeam_queue
crossbeam_utils
crypto_hash
csv
csv_core
curl
curl_sys
darling
darling_core
darling_macro
datafrog
datapond
datapond_derive
datapond_macro
either
encoding_rs
env_logger
error_chain
failure
failure_derive
filetime
flate2
fnv
foreign_types
foreign_types_shared
form_urlencoded
fs2
futures
futures_channel
futures_core
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
stream
task
getrandom
gimli
git2
git2_curl
glob
globset
h2
hashbrown
heck
hex
home
http
http_body
httparse
httpdate
humantime
hyper
hyper_tls
ident_case
idna
ignore
im_rc
indexmap
iovec
ipnet
itertools
itoa
jobserver
lazy_static
lazycell
libc
libgit2_sys
libnghttp2_sys
libssh2_sys
libz_sys
lock_api
log
log_derive
matches
maybe_uninit
memchr
mime
miniz_oxide
mio
mio_uds
native_tls
nix
num_cpus
num_integer
num_traits
object
once_cell
opener
openssl
openssl_probe
openssl_sys
parking_lot
parking_lot_core
percent_encoding
pest
pin_project
pin_project_lite
pin_utils
ppv_lite86
print_stats
proc_macro2
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
quick_error
quote
rand
rand_chacha
rand_core
rand_xoshiro
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
rustc
rustc_demangle
rustc_hash
rustc_workspace_hack
rustfix
rustwide
ryu
same_file
scopeguard
semver
semver_parser
serde
serde_derive
serde_ignored
serde_json
serde_urlencoded
shell_escape
signal_hook_registry
simplelog
sized_chunks
slab
smallvec
socket2
strip_ansi_escapes
strsim
structopt
structopt_derive
syn
synstructure
tar
tempdir
tempfile
termcolor
textwrap
thiserror
thiserror_impl
thread_local
time
tinyvec
tinyvec_macros
tokio
future
io
loom
macros
net
park
runtime
sync
task
time
util
tokio_executor
tokio_io
tokio_native_tls
tokio_process
tokio_reactor
tokio_signal
tokio_stream
tokio_sync
tokio_util
toml
tower_service
tracing
tracing_core
tracing_futures
try_lock
typenum
ucd_trie
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
url
utf8parse
vec_map
vte
walkdir
want
xattr
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
//! Zero-cost Futures in Rust
//!
//! This library is an implementation of futures in Rust which aims to provide
//! a robust implementation of handling asynchronous computations, ergonomic
//! composition and usage, and zero-cost abstractions over what would otherwise
//! be written by hand.
//!
//! Futures are a concept for an object which is a proxy for another value that
//! may not be ready yet. For example issuing an HTTP request may return a
//! future for the HTTP response, as it probably hasn't arrived yet. With an
//! object representing a value that will eventually be available, futures allow
//! for powerful composition of tasks through basic combinators that can perform
//! operations like chaining computations, changing the types of futures, or
//! waiting for two futures to complete at the same time.
//!
//! You can find extensive tutorials and documentations at [https://tokio.rs]
//! for both this crate (asynchronous programming in general) as well as the
//! Tokio stack to perform async I/O with.
//!
//! [https://tokio.rs]: https://tokio.rs
//!
//! ## Installation
//!
//! Add this to your `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! futures = "0.1"
//! ```
//!
//! ## Examples
//!
//! Let's take a look at a few examples of how futures might be used:
//!
//! ```
//! extern crate futures;
//!
//! use std::io;
//! use std::time::Duration;
//! use futures::prelude::*;
//! use futures::future::Map;
//!
//! // A future is actually a trait implementation, so we can generically take a
//! // future of any integer and return back a future that will resolve to that
//! // value plus 10 more.
//! //
//! // Note here that like iterators, we're returning the `Map` combinator in
//! // the futures crate, not a boxed abstraction. This is a zero-cost
//! // construction of a future.
//! fn add_ten<F>(future: F) -> Map<F, fn(i32) -> i32>
//!     where F: Future<Item=i32>,
//! {
//!     fn add(a: i32) -> i32 { a + 10 }
//!     future.map(add)
//! }
//!
//! // Not only can we modify one future, but we can even compose them together!
//! // Here we have a function which takes two futures as input, and returns a
//! // future that will calculate the sum of their two values.
//! //
//! // Above we saw a direct return value of the `Map` combinator, but
//! // performance isn't always critical and sometimes it's more ergonomic to
//! // return a trait object like we do here. Note though that there's only one
//! // allocation here, not any for the intermediate futures.
//! fn add<'a, A, B>(a: A, b: B) -> Box<Future<Item=i32, Error=A::Error> + 'a>
//!     where A: Future<Item=i32> + 'a,
//!           B: Future<Item=i32, Error=A::Error> + 'a,
//! {
//!     Box::new(a.join(b).map(|(a, b)| a + b))
//! }
//!
//! // Futures also allow chaining computations together, starting another after
//! // the previous finishes. Here we wait for the first computation to finish,
//! // and then decide what to do depending on the result.
//! fn download_timeout(url: &str,
//!                     timeout_dur: Duration)
//!                     -> Box<Future<Item=Vec<u8>, Error=io::Error>> {
//!     use std::io;
//!     use std::net::{SocketAddr, TcpStream};
//!
//!     type IoFuture<T> = Box<Future<Item=T, Error=io::Error>>;
//!
//!     // First thing to do is we need to resolve our URL to an address. This
//!     // will likely perform a DNS lookup which may take some time.
//!     let addr = resolve(url);
//!
//!     // After we acquire the address, we next want to open up a TCP
//!     // connection.
//!     let tcp = addr.and_then(|addr| connect(&addr));
//!
//!     // After the TCP connection is established and ready to go, we're off to
//!     // the races!
//!     let data = tcp.and_then(|conn| download(conn));
//!
//!     // That all might take awhile, though, so let's not wait too long for it
//!     // to all come back. The `select` combinator here returns a future which
//!     // resolves to the first value that's ready plus the next future.
//!     //
//!     // Note we can also use the `then` combinator which is similar to
//!     // `and_then` above except that it receives the result of the
//!     // computation, not just the successful value.
//!     //
//!     // Again note that all the above calls to `and_then` and the below calls
//!     // to `map` and such require no allocations. We only ever allocate once
//!     // we hit the `Box::new()` call at the end here, which means we've built
//!     // up a relatively involved computation with only one box, and even that
//!     // was optional!
//!
//!     let data = data.map(Ok);
//!     let timeout = timeout(timeout_dur).map(Err);
//!
//!     let ret = data.select(timeout).then(|result| {
//!         match result {
//!             // One future succeeded, and it was the one which was
//!             // downloading data from the connection.
//!             Ok((Ok(data), _other_future)) => Ok(data),
//!
//!             // The timeout fired, and otherwise no error was found, so
//!             // we translate this to an error.
//!             Ok((Err(_timeout), _other_future)) => {
//!                 Err(io::Error::new(io::ErrorKind::Other, "timeout"))
//!             }
//!
//!             // A normal I/O error happened, so we pass that on through.
//!             Err((e, _other_future)) => Err(e),
//!         }
//!     });
//!     return Box::new(ret);
//!
//!     fn resolve(url: &str) -> IoFuture<SocketAddr> {
//!         // ...
//! #       panic!("unimplemented");
//!     }
//!
//!     fn connect(hostname: &SocketAddr) -> IoFuture<TcpStream> {
//!         // ...
//! #       panic!("unimplemented");
//!     }
//!
//!     fn download(stream: TcpStream) -> IoFuture<Vec<u8>> {
//!         // ...
//! #       panic!("unimplemented");
//!     }
//!
//!     fn timeout(stream: Duration) -> IoFuture<()> {
//!         // ...
//! #       panic!("unimplemented");
//!     }
//! }
//! # fn main() {}
//! ```
//!
//! Some more information can also be found in the [README] for now, but
//! otherwise feel free to jump in to the docs below!
//!
//! [README]: https://github.com/rust-lang-nursery/futures-rs#futures-rs

#![no_std]
#![deny(missing_docs, missing_debug_implementations)]
#![allow(bare_trait_objects, unknown_lints)]
#![doc(html_root_url = "https://docs.rs/futures/0.1")]

#[macro_use]
#[cfg(feature = "use_std")]
extern crate std;

macro_rules! if_std {
    ($($i:item)*) => ($(
        #[cfg(feature = "use_std")]
        $i
    )*)
}

#[macro_use]
mod poll;
pub use poll::{Poll, Async, AsyncSink, StartSend};

pub mod future;
pub use future::{Future, IntoFuture};

pub mod stream;
pub use stream::Stream;

pub mod sink;
pub use sink::Sink;

#[deprecated(since = "0.1.4", note = "import through the future module instead")]
#[cfg(feature = "with-deprecated")]
#[doc(hidden)]
pub use future::{done, empty, failed, finished, lazy};

#[doc(hidden)]
#[cfg(feature = "with-deprecated")]
#[deprecated(since = "0.1.4", note = "import through the future module instead")]
pub use future::{
    Done, Empty, Failed, Finished, Lazy, AndThen, Flatten, FlattenStream, Fuse, IntoStream,
    Join, Join3, Join4, Join5, Map, MapErr, OrElse, Select,
    SelectNext, Then
};

#[cfg(feature = "use_std")]
mod lock;
mod task_impl;

mod resultstream;

pub mod task;
pub mod executor;
#[cfg(feature = "use_std")]
pub mod sync;
#[cfg(feature = "use_std")]
pub mod unsync;


if_std! {
    #[doc(hidden)]
    #[deprecated(since = "0.1.4", note = "use sync::oneshot::channel instead")]
    #[cfg(feature = "with-deprecated")]
    pub use sync::oneshot::channel as oneshot;

    #[doc(hidden)]
    #[deprecated(since = "0.1.4", note = "use sync::oneshot::Receiver instead")]
    #[cfg(feature = "with-deprecated")]
    pub use sync::oneshot::Receiver as Oneshot;

    #[doc(hidden)]
    #[deprecated(since = "0.1.4", note = "use sync::oneshot::Sender instead")]
    #[cfg(feature = "with-deprecated")]
    pub use sync::oneshot::Sender as Complete;

    #[doc(hidden)]
    #[deprecated(since = "0.1.4", note = "use sync::oneshot::Canceled instead")]
    #[cfg(feature = "with-deprecated")]
    pub use sync::oneshot::Canceled;

    #[doc(hidden)]
    #[deprecated(since = "0.1.4", note = "import through the future module instead")]
    #[cfg(feature = "with-deprecated")]
    #[allow(deprecated)]
    pub use future::{BoxFuture, collect, select_all, select_ok};

    #[doc(hidden)]
    #[deprecated(since = "0.1.4", note = "import through the future module instead")]
    #[cfg(feature = "with-deprecated")]
    pub use future::{SelectAll, SelectAllNext, Collect, SelectOk};
}

/// A "prelude" for crates using the `futures` crate.
///
/// This prelude is similar to the standard library's prelude in that you'll
/// almost always want to import its entire contents, but unlike the standard
/// library's prelude you'll have to do so manually. An example of using this is:
///
/// ```
/// use futures::prelude::*;
/// ```
///
/// We may add items to this over time as they become ubiquitous as well, but
/// otherwise this should help cut down on futures-related imports when you're
/// working with the `futures` crate!
pub mod prelude {
    #[doc(no_inline)]
    pub use {Future, Stream, Sink, Async, AsyncSink, Poll, StartSend};
    #[doc(no_inline)]
    pub use IntoFuture;
}