use std::borrow::Borrow;
use std::cmp::Ordering;
use std::fmt::{Debug, Error, Formatter};
use std::hash::{Hash, Hasher};
use std::iter::Sum;
use std::iter::{FromIterator, FusedIterator};
use std::mem::{replace, swap};
use std::ops::{Add, Index, IndexMut, RangeBounds};
use sized_chunks::InlineArray;
use crate::nodes::chunk::{Chunk, CHUNK_SIZE};
use crate::nodes::rrb::{Node, PopResult, PushResult, SplitResult};
use crate::sort;
use crate::util::{clone_ref, swap_indices, to_range, Pool, PoolDefault, PoolRef, Ref, Side};
use self::VectorInner::{Full, Inline, Single};
mod focus;
pub use self::focus::{Focus, FocusMut};
mod pool;
pub use self::pool::RRBPool;
#[cfg(all(threadsafe, any(test, feature = "rayon")))]
pub mod rayon;
#[macro_export]
macro_rules! vector {
() => { $crate::vector::Vector::new() };
( $($x:expr),* ) => {{
let mut l = $crate::vector::Vector::new();
$(
l.push_back($x);
)*
l
}};
( $($x:expr ,)* ) => {{
let mut l = $crate::vector::Vector::new();
$(
l.push_back($x);
)*
l
}};
}
pub struct Vector<A> {
vector: VectorInner<A>,
}
enum VectorInner<A> {
Inline(RRBPool<A>, InlineArray<A, RRB<A>>),
Single(RRBPool<A>, PoolRef<Chunk<A>>),
Full(RRBPool<A>, RRB<A>),
}
#[doc(hidden)]
pub struct RRB<A> {
length: usize,
middle_level: usize,
outer_f: PoolRef<Chunk<A>>,
inner_f: PoolRef<Chunk<A>>,
middle: Ref<Node<A>>,
inner_b: PoolRef<Chunk<A>>,
outer_b: PoolRef<Chunk<A>>,
}
impl<A> Clone for RRB<A> {
fn clone(&self) -> Self {
RRB {
length: self.length,
middle_level: self.middle_level,
outer_f: self.outer_f.clone(),
inner_f: self.inner_f.clone(),
middle: self.middle.clone(),
inner_b: self.inner_b.clone(),
outer_b: self.outer_b.clone(),
}
}
}
impl<A: Clone> Vector<A> {
#[cfg_attr(not(feature = "pool"), doc = "hidden")]
pub fn pool(&self) -> &RRBPool<A> {
match self.vector {
Inline(ref pool, _) => pool,
Single(ref pool, _) => pool,
Full(ref pool, _) => pool,
}
}
fn needs_promotion(&self) -> bool {
match &self.vector {
Inline(_, chunk) if chunk.is_full() => true,
Single(_, chunk) if chunk.is_full() => true,
_ => false,
}
}
fn promote_inline(&mut self) {
if let Inline(pool, chunk) = &mut self.vector {
self.vector = Single(pool.clone(), PoolRef::new(&pool.value_pool, chunk.into()));
}
}
fn promote_front(&mut self) {
self.vector = match &mut self.vector {
Inline(pool, chunk) => {
Single(pool.clone(), PoolRef::new(&pool.value_pool, chunk.into()))
}
Single(pool, chunk) => {
let chunk = chunk.clone();
Full(
pool.clone(),
RRB {
length: chunk.len(),
middle_level: 0,
outer_f: PoolRef::default(&pool.value_pool),
inner_f: chunk,
middle: Ref::new(Node::new()),
inner_b: PoolRef::default(&pool.value_pool),
outer_b: PoolRef::default(&pool.value_pool),
},
)
}
Full(_, _) => return,
}
}
fn promote_back(&mut self) {
self.vector = match &mut self.vector {
Inline(pool, chunk) => {
Single(pool.clone(), PoolRef::new(&pool.value_pool, chunk.into()))
}
Single(pool, chunk) => {
let chunk = chunk.clone();
Full(
pool.clone(),
RRB {
length: chunk.len(),
middle_level: 0,
outer_f: PoolRef::default(&pool.value_pool),
inner_f: PoolRef::default(&pool.value_pool),
middle: Ref::new(Node::new()),
inner_b: chunk,
outer_b: PoolRef::default(&pool.value_pool),
},
)
}
Full(_, _) => return,
}
}
#[must_use]
pub fn new() -> Self {
Self {
vector: Inline(RRBPool::default(), InlineArray::new()),
}
}
#[cfg(feature = "pool")]
#[must_use]
pub fn with_pool(pool: &RRBPool<A>) -> Self {
Self {
vector: Inline(pool.clone(), InlineArray::new()),
}
}
#[inline]
#[must_use]
pub fn len(&self) -> usize {
match &self.vector {
Inline(_, chunk) => chunk.len(),
Single(_, chunk) => chunk.len(),
Full(_, tree) => tree.length,
}
}
#[inline]
#[must_use]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
#[must_use]
pub fn ptr_eq(&self, other: &Self) -> bool {
fn cmp_chunk<A>(left: &PoolRef<Chunk<A>>, right: &PoolRef<Chunk<A>>) -> bool {
(left.is_empty() && right.is_empty()) || PoolRef::ptr_eq(left, right)
}
if std::ptr::eq(self, other) {
return true;
}
match (&self.vector, &other.vector) {
(Single(_, left), Single(_, right)) => cmp_chunk(left, right),
(Full(_, left), Full(_, right)) => {
cmp_chunk(&left.outer_f, &right.outer_f)
&& cmp_chunk(&left.inner_f, &right.inner_f)
&& cmp_chunk(&left.inner_b, &right.inner_b)
&& cmp_chunk(&left.outer_b, &right.outer_b)
&& (left.middle.is_empty() && right.middle.is_empty())
|| Ref::ptr_eq(&left.middle, &right.middle)
}
_ => false,
}
}
#[inline]
#[must_use]
pub fn iter(&self) -> Iter<'_, A> {
Iter::new(self)
}
#[inline]
#[must_use]
pub fn iter_mut(&mut self) -> IterMut<'_, A> {
IterMut::new(self)
}
#[inline]
#[must_use]
pub fn leaves(&self) -> Chunks<'_, A> {
Chunks::new(self)
}
#[inline]
#[must_use]
pub fn leaves_mut(&mut self) -> ChunksMut<'_, A> {
ChunksMut::new(self)
}
#[inline]
#[must_use]
pub fn focus(&self) -> Focus<'_, A> {
Focus::new(self)
}
#[inline]
#[must_use]
pub fn focus_mut(&mut self) -> FocusMut<'_, A> {
FocusMut::new(self)
}
#[must_use]
pub fn get(&self, index: usize) -> Option<&A> {
if index >= self.len() {
return None;
}
match &self.vector {
Inline(_, chunk) => chunk.get(index),
Single(_, chunk) => chunk.get(index),
Full(_, tree) => {
let mut local_index = index;
if local_index < tree.outer_f.len() {
return Some(&tree.outer_f[local_index]);
}
local_index -= tree.outer_f.len();
if local_index < tree.inner_f.len() {
return Some(&tree.inner_f[local_index]);
}
local_index -= tree.inner_f.len();
if local_index < tree.middle.len() {
return Some(tree.middle.index(tree.middle_level, local_index));
}
local_index -= tree.middle.len();
if local_index < tree.inner_b.len() {
return Some(&tree.inner_b[local_index]);
}
local_index -= tree.inner_b.len();
Some(&tree.outer_b[local_index])
}
}
}
#[must_use]
pub fn get_mut(&mut self, index: usize) -> Option<&mut A> {
if index >= self.len() {
return None;
}
match &mut self.vector {
Inline(_, chunk) => chunk.get_mut(index),
Single(pool, chunk) => PoolRef::make_mut(&pool.value_pool, chunk).get_mut(index),
Full(pool, tree) => {
let mut local_index = index;
if local_index < tree.outer_f.len() {
let outer_f = PoolRef::make_mut(&pool.value_pool, &mut tree.outer_f);
return Some(&mut outer_f[local_index]);
}
local_index -= tree.outer_f.len();
if local_index < tree.inner_f.len() {
let inner_f = PoolRef::make_mut(&pool.value_pool, &mut tree.inner_f);
return Some(&mut inner_f[local_index]);
}
local_index -= tree.inner_f.len();
if local_index < tree.middle.len() {
let middle = Ref::make_mut(&mut tree.middle);
return Some(middle.index_mut(pool, tree.middle_level, local_index));
}
local_index -= tree.middle.len();
if local_index < tree.inner_b.len() {
let inner_b = PoolRef::make_mut(&pool.value_pool, &mut tree.inner_b);
return Some(&mut inner_b[local_index]);
}
local_index -= tree.inner_b.len();
let outer_b = PoolRef::make_mut(&pool.value_pool, &mut tree.outer_b);
Some(&mut outer_b[local_index])
}
}
}
#[inline]
#[must_use]
pub fn front(&self) -> Option<&A> {
self.get(0)
}
#[inline]
#[must_use]
pub fn front_mut(&mut self) -> Option<&mut A> {
self.get_mut(0)
}
#[inline]
#[must_use]
pub fn head(&self) -> Option<&A> {
self.get(0)
}
#[must_use]
pub fn back(&self) -> Option<&A> {
if self.is_empty() {
None
} else {
self.get(self.len() - 1)
}
}
#[must_use]
pub fn back_mut(&mut self) -> Option<&mut A> {
if self.is_empty() {
None
} else {
let len = self.len();
self.get_mut(len - 1)
}
}
#[inline]
#[must_use]
pub fn last(&self) -> Option<&A> {
self.back()
}
#[must_use]
pub fn index_of(&self, value: &A) -> Option<usize>
where
A: PartialEq,
{
for (index, item) in self.iter().enumerate() {
if value == item {
return Some(index);
}
}
None
}
#[inline]
#[must_use]
pub fn contains(&self, value: &A) -> bool
where
A: PartialEq,
{
self.index_of(value).is_some()
}
pub fn clear(&mut self) {
if !self.is_empty() {
self.vector = Inline(self.pool().clone(), InlineArray::new());
}
}
pub fn binary_search_by<F>(&self, mut f: F) -> Result<usize, usize>
where
F: FnMut(&A) -> Ordering,
{
let mut size = self.len();
if size == 0 {
return Err(0);
}
let mut base = 0;
while size > 1 {
let half = size / 2;
let mid = base + half;
base = match f(&self[mid]) {
Ordering::Greater => base,
_ => mid,
};
size -= half;
}
match f(&self[base]) {
Ordering::Equal => Ok(base),
Ordering::Greater => Err(base),
Ordering::Less => Err(base + 1),
}
}
pub fn binary_search(&self, value: &A) -> Result<usize, usize>
where
A: Ord,
{
self.binary_search_by(|e| e.cmp(value))
}
pub fn binary_search_by_key<B, F>(&self, b: &B, mut f: F) -> Result<usize, usize>
where
F: FnMut(&A) -> B,
B: Ord,
{
self.binary_search_by(|k| f(k).cmp(b))
}
}
impl<A: Clone> Vector<A> {
#[inline]
#[must_use]
pub fn unit(a: A) -> Self {
let pool = RRBPool::default();
if InlineArray::<A, RRB<A>>::CAPACITY > 0 {
let mut array = InlineArray::new();
array.push(a);
Self {
vector: Inline(pool, array),
}
} else {
let chunk = PoolRef::new(&pool.value_pool, Chunk::unit(a));
Self {
vector: Single(pool, chunk),
}
}
}
#[must_use]
pub fn update(&self, index: usize, value: A) -> Self {
let mut out = self.clone();
out[index] = value;
out
}
#[inline]
pub fn set(&mut self, index: usize, value: A) -> A {
replace(&mut self[index], value)
}
pub fn swap(&mut self, i: usize, j: usize) {
swap_indices(self, i, j)
}
pub fn push_front(&mut self, value: A) {
if self.needs_promotion() {
self.promote_back();
}
match &mut self.vector {
Inline(_, chunk) => {
chunk.insert(0, value);
}
Single(pool, chunk) => PoolRef::make_mut(&pool.value_pool, chunk).push_front(value),
Full(pool, tree) => tree.push_front(pool, value),
}
}
pub fn push_back(&mut self, value: A) {
if self.needs_promotion() {
self.promote_front();
}
match &mut self.vector {
Inline(_, chunk) => {
chunk.push(value);
}
Single(pool, chunk) => PoolRef::make_mut(&pool.value_pool, chunk).push_back(value),
Full(pool, tree) => tree.push_back(pool, value),
}
}
pub fn pop_front(&mut self) -> Option<A> {
if self.is_empty() {
None
} else {
match &mut self.vector {
Inline(_, chunk) => chunk.remove(0),
Single(pool, chunk) => Some(PoolRef::make_mut(&pool.value_pool, chunk).pop_front()),
Full(pool, tree) => tree.pop_front(pool),
}
}
}
pub fn pop_back(&mut self) -> Option<A> {
if self.is_empty() {
None
} else {
match &mut self.vector {
Inline(_, chunk) => chunk.pop(),
Single(pool, chunk) => Some(PoolRef::make_mut(&pool.value_pool, chunk).pop_back()),
Full(pool, tree) => tree.pop_back(pool),
}
}
}
pub fn append(&mut self, mut other: Self) {
if other.is_empty() {
return;
}
if self.is_empty() {
replace(self, other);
return;
}
self.promote_inline();
other.promote_inline();
let total_length = self
.len()
.checked_add(other.len())
.expect("Vector length overflow");
match &mut self.vector {
Inline(_, _) => unreachable!("inline vecs should have been promoted"),
Single(pool, left) => {
match &mut other.vector {
Inline(_, _) => unreachable!("inline vecs should have been promoted"),
Single(_, ref mut right) if total_length <= CHUNK_SIZE => {
PoolRef::make_mut(&pool.value_pool, left)
.append(PoolRef::make_mut(&pool.value_pool, right));
return;
}
_ if total_length <= CHUNK_SIZE => {
while let Some(value) = other.pop_front() {
PoolRef::make_mut(&pool.value_pool, left).push_back(value);
}
return;
}
_ => {}
}
}
Full(pool, left) => {
if let Full(_, mut right) = other.vector {
if left.middle.is_empty()
&& right.middle.is_empty()
&& left.outer_b.is_empty()
&& left.inner_b.is_empty()
&& right.outer_f.is_empty()
&& right.inner_f.is_empty()
{
left.inner_b = right.inner_b;
left.outer_b = right.outer_b;
left.length = total_length;
return;
}
if left.middle.is_empty()
&& right.middle.is_empty()
&& total_length <= CHUNK_SIZE * 4
{
while let Some(value) = right.pop_front(pool) {
left.push_back(pool, value);
}
return;
}
let inner_b1 = left.inner_b.clone();
left.push_middle(pool, Side::Right, inner_b1);
let outer_b1 = left.outer_b.clone();
left.push_middle(pool, Side::Right, outer_b1);
let inner_f2 = right.inner_f.clone();
right.push_middle(pool, Side::Left, inner_f2);
let outer_f2 = right.outer_f.clone();
right.push_middle(pool, Side::Left, outer_f2);
let mut middle1 = clone_ref(replace(&mut left.middle, Ref::from(Node::new())));
let mut middle2 = clone_ref(right.middle);
let normalised_middle = match left.middle_level.cmp(&right.middle_level) {
Ordering::Greater => {
middle2 = middle2.elevate(pool, left.middle_level - right.middle_level);
left.middle_level
}
Ordering::Less => {
middle1 = middle1.elevate(pool, right.middle_level - left.middle_level);
right.middle_level
}
Ordering::Equal => left.middle_level,
};
left.middle = Ref::new(Node::merge(pool, middle1, middle2, normalised_middle));
left.middle_level = normalised_middle + 1;
left.inner_b = right.inner_b;
left.outer_b = right.outer_b;
left.length = total_length;
left.prune();
return;
}
}
}
self.promote_front();
other.promote_back();
self.append(other)
}
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(&A) -> bool,
{
let len = self.len();
let mut del = 0;
{
let mut focus = self.focus_mut();
for i in 0..len {
if !f(focus.index(i)) {
del += 1;
} else if del > 0 {
focus.swap(i - del, i);
}
}
}
if del > 0 {
self.split_off(len - del);
}
}
pub fn split_at(mut self, index: usize) -> (Self, Self) {
let right = self.split_off(index);
(self, right)
}
pub fn split_off(&mut self, index: usize) -> Self {
assert!(index <= self.len());
match &mut self.vector {
Inline(pool, chunk) => Self {
vector: Inline(pool.clone(), chunk.split_off(index)),
},
Single(pool, chunk) => Self {
vector: Single(
pool.clone(),
PoolRef::new(
&pool.value_pool,
PoolRef::make_mut(&pool.value_pool, chunk).split_off(index),
),
),
},
Full(pool, tree) => {
let mut local_index = index;
if local_index < tree.outer_f.len() {
let of2 = PoolRef::make_mut(&pool.value_pool, &mut tree.outer_f)
.split_off(local_index);
let right = RRB {
length: tree.length - index,
middle_level: tree.middle_level,
outer_f: PoolRef::new(&pool.value_pool, of2),
inner_f: replace_pool_def(&pool.value_pool, &mut tree.inner_f),
middle: std::mem::take(&mut tree.middle),
inner_b: replace_pool_def(&pool.value_pool, &mut tree.inner_b),
outer_b: replace_pool_def(&pool.value_pool, &mut tree.outer_b),
};
tree.length = index;
tree.middle_level = 0;
return Self {
vector: Full(pool.clone(), right),
};
}
local_index -= tree.outer_f.len();
if local_index < tree.inner_f.len() {
let if2 = PoolRef::make_mut(&pool.value_pool, &mut tree.inner_f)
.split_off(local_index);
let right = RRB {
length: tree.length - index,
middle_level: tree.middle_level,
outer_f: PoolRef::new(&pool.value_pool, if2),
inner_f: PoolRef::<Chunk<A>>::default(&pool.value_pool),
middle: std::mem::take(&mut tree.middle),
inner_b: replace_pool_def(&pool.value_pool, &mut tree.inner_b),
outer_b: replace_pool_def(&pool.value_pool, &mut tree.outer_b),
};
tree.length = index;
tree.middle_level = 0;
swap(&mut tree.outer_b, &mut tree.inner_f);
return Self {
vector: Full(pool.clone(), right),
};
}
local_index -= tree.inner_f.len();
if local_index < tree.middle.len() {
let mut right_middle = tree.middle.clone();
let (c1, c2) = {
let m1 = Ref::make_mut(&mut tree.middle);
let m2 = Ref::make_mut(&mut right_middle);
match m1.split(pool, tree.middle_level, Side::Right, local_index) {
SplitResult::Dropped(_) => (),
SplitResult::OutOfBounds => unreachable!(),
};
match m2.split(pool, tree.middle_level, Side::Left, local_index) {
SplitResult::Dropped(_) => (),
SplitResult::OutOfBounds => unreachable!(),
};
let c1 = match m1.pop_chunk(pool, tree.middle_level, Side::Right) {
PopResult::Empty => PoolRef::default(&pool.value_pool),
PopResult::Done(chunk) => chunk,
PopResult::Drained(chunk) => {
m1.clear_node();
chunk
}
};
let c2 = match m2.pop_chunk(pool, tree.middle_level, Side::Left) {
PopResult::Empty => PoolRef::default(&pool.value_pool),
PopResult::Done(chunk) => chunk,
PopResult::Drained(chunk) => {
m2.clear_node();
chunk
}
};
(c1, c2)
};
let mut right = RRB {
length: tree.length - index,
middle_level: tree.middle_level,
outer_f: c2,
inner_f: PoolRef::<Chunk<A>>::default(&pool.value_pool),
middle: right_middle,
inner_b: replace_pool_def(&pool.value_pool, &mut tree.inner_b),
outer_b: replace(&mut tree.outer_b, c1),
};
tree.length = index;
tree.prune();
right.prune();
return Self {
vector: Full(pool.clone(), right),
};
}
local_index -= tree.middle.len();
if local_index < tree.inner_b.len() {
let ib2 = PoolRef::make_mut(&pool.value_pool, &mut tree.inner_b)
.split_off(local_index);
let right = RRB {
length: tree.length - index,
outer_b: replace_pool_def(&pool.value_pool, &mut tree.outer_b),
outer_f: PoolRef::new(&pool.value_pool, ib2),
..RRB::new(pool)
};
tree.length = index;
swap(&mut tree.outer_b, &mut tree.inner_b);
return Self {
vector: Full(pool.clone(), right),
};
}
local_index -= tree.inner_b.len();
let ob2 =
PoolRef::make_mut(&pool.value_pool, &mut tree.outer_b).split_off(local_index);
tree.length = index;
Self {
vector: Single(pool.clone(), PoolRef::new(&pool.value_pool, ob2)),
}
}
}
}
#[must_use]
pub fn skip(&self, count: usize) -> Self {
self.clone().split_off(count)
}
#[must_use]
pub fn take(&self, count: usize) -> Self {
let mut left = self.clone();
left.split_off(count);
left
}
pub fn truncate(&mut self, len: usize) {
self.split_off(len);
}
pub fn slice<R>(&mut self, range: R) -> Self
where
R: RangeBounds<usize>,
{
let r = to_range(&range, self.len());
if r.start >= r.end || r.start >= self.len() {
return Vector::new();
}
let mut middle = self.split_off(r.start);
let right = middle.split_off(r.end - r.start);
self.append(right);
middle
}
pub fn insert(&mut self, index: usize, value: A) {
if index == 0 {
return self.push_front(value);
}
if index == self.len() {
return self.push_back(value);
}
assert!(index < self.len());
if if let Inline(_, chunk) = &self.vector {
chunk.is_full()
} else {
false
} {
self.promote_inline();
}
match &mut self.vector {
Inline(_, chunk) => {
chunk.insert(index, value);
}
Single(pool, chunk) if chunk.len() < CHUNK_SIZE => {
PoolRef::make_mut(&pool.value_pool, chunk).insert(index, value)
}
_ => {
let right = self.split_off(index);
self.push_back(value);
self.append(right);
}
}
}
pub fn remove(&mut self, index: usize) -> A {
assert!(index < self.len());
match &mut self.vector {
Inline(_, chunk) => chunk.remove(index).unwrap(),
Single(pool, chunk) => PoolRef::make_mut(&pool.value_pool, chunk).remove(index),
_ => {
if index == 0 {
return self.pop_front().unwrap();
}
if index == self.len() - 1 {
return self.pop_back().unwrap();
}
let mut right = self.split_off(index);
let value = right.pop_front().unwrap();
self.append(right);
value
}
}
}
pub fn insert_ord(&mut self, item: A)
where
A: Ord,
{
match self.binary_search(&item) {
Ok(index) => self.insert(index, item),
Err(index) => self.insert(index, item),
}
}
pub fn sort(&mut self)
where
A: Ord,
{
self.sort_by(Ord::cmp)
}
pub fn sort_by<F>(&mut self, cmp: F)
where
F: Fn(&A, &A) -> Ordering,
{
let len = self.len();
if len > 1 {
sort::quicksort(&mut self.focus_mut(), 0, len - 1, &cmp);
}
}
#[cfg(any(test, feature = "debug"))]
pub fn assert_invariants(&self) {
if let Full(_, ref tree) = self.vector {
tree.assert_invariants();
}
}
}
impl<A: Clone> RRB<A> {
fn new(pool: &RRBPool<A>) -> Self {
RRB {
length: 0,
middle_level: 0,
outer_f: PoolRef::default(&pool.value_pool),
inner_f: PoolRef::default(&pool.value_pool),
middle: Ref::new(Node::new()),
inner_b: PoolRef::default(&pool.value_pool),
outer_b: PoolRef::default(&pool.value_pool),
}
}
#[cfg(any(test, feature = "debug"))]
fn assert_invariants(&self) {
let ml = self.middle.assert_invariants(self.middle_level);
assert_eq!(
self.length,
self.outer_f.len() + self.inner_f.len() + ml + self.inner_b.len() + self.outer_b.len()
);
}
fn prune(&mut self) {
if self.middle.is_empty() {
self.middle = Ref::new(Node::new());
self.middle_level = 0;
} else {
while self.middle_level > 0 && self.middle.is_single() {
self.middle = Ref::new(self.middle.first_child().clone());
self.middle_level -= 1;
}
}
}
fn pop_front(&mut self, pool: &RRBPool<A>) -> Option<A> {
if self.length == 0 {
return None;
}
if self.outer_f.is_empty() {
if self.inner_f.is_empty() {
if self.middle.is_empty() {
if self.inner_b.is_empty() {
swap(&mut self.outer_f, &mut self.outer_b);
} else {
swap(&mut self.outer_f, &mut self.inner_b);
}
} else {
self.outer_f = self.pop_middle(pool, Side::Left).unwrap();
}
} else {
swap(&mut self.outer_f, &mut self.inner_f);
}
}
self.length -= 1;
let outer_f = PoolRef::make_mut(&pool.value_pool, &mut self.outer_f);
Some(outer_f.pop_front())
}
fn pop_back(&mut self, pool: &RRBPool<A>) -> Option<A> {
if self.length == 0 {
return None;
}
if self.outer_b.is_empty() {
if self.inner_b.is_empty() {
if self.middle.is_empty() {
if self.inner_f.is_empty() {
swap(&mut self.outer_b, &mut self.outer_f);
} else {
swap(&mut self.outer_b, &mut self.inner_f);
}
} else {
self.outer_b = self.pop_middle(pool, Side::Right).unwrap();
}
} else {
swap(&mut self.outer_b, &mut self.inner_b);
}
}
self.length -= 1;
let outer_b = PoolRef::make_mut(&pool.value_pool, &mut self.outer_b);
Some(outer_b.pop_back())
}
fn push_front(&mut self, pool: &RRBPool<A>, value: A) {
if self.outer_f.is_full() {
swap(&mut self.outer_f, &mut self.inner_f);
if !self.outer_f.is_empty() {
let mut chunk = PoolRef::new(&pool.value_pool, Chunk::new());
swap(&mut chunk, &mut self.outer_f);
self.push_middle(pool, Side::Left, chunk);
}
}
self.length = self.length.checked_add(1).expect("Vector length overflow");
let outer_f = PoolRef::make_mut(&pool.value_pool, &mut self.outer_f);
outer_f.push_front(value)
}
fn push_back(&mut self, pool: &RRBPool<A>, value: A) {
if self.outer_b.is_full() {
swap(&mut self.outer_b, &mut self.inner_b);
if !self.outer_b.is_empty() {
let mut chunk = PoolRef::new(&pool.value_pool, Chunk::new());
swap(&mut chunk, &mut self.outer_b);
self.push_middle(pool, Side::Right, chunk);
}
}
self.length = self.length.checked_add(1).expect("Vector length overflow");
let outer_b = PoolRef::make_mut(&pool.value_pool, &mut self.outer_b);
outer_b.push_back(value)
}
fn push_middle(&mut self, pool: &RRBPool<A>, side: Side, chunk: PoolRef<Chunk<A>>) {
if chunk.is_empty() {
return;
}
let new_middle = {
let middle = Ref::make_mut(&mut self.middle);
match middle.push_chunk(pool, self.middle_level, side, chunk) {
PushResult::Done => return,
PushResult::Full(chunk, _num_drained) => Ref::from({
match side {
Side::Left => Node::from_chunk(pool, self.middle_level, chunk)
.join_branches(pool, middle.clone(), self.middle_level),
Side::Right => middle.clone().join_branches(
pool,
Node::from_chunk(pool, self.middle_level, chunk),
self.middle_level,
),
}
}),
}
};
self.middle_level += 1;
self.middle = new_middle;
}
fn pop_middle(&mut self, pool: &RRBPool<A>, side: Side) -> Option<PoolRef<Chunk<A>>> {
let chunk = {
let middle = Ref::make_mut(&mut self.middle);
match middle.pop_chunk(pool, self.middle_level, side) {
PopResult::Empty => return None,
PopResult::Done(chunk) => chunk,
PopResult::Drained(chunk) => {
middle.clear_node();
self.middle_level = 0;
chunk
}
}
};
Some(chunk)
}
}
#[inline]
fn replace_pool_def<A: PoolDefault>(pool: &Pool<A>, dest: &mut PoolRef<A>) -> PoolRef<A> {
replace(dest, PoolRef::default(pool))
}
impl<A: Clone> Default for Vector<A> {
fn default() -> Self {
Self::new()
}
}
impl<A: Clone> Clone for Vector<A> {
fn clone(&self) -> Self {
Self {
vector: match &self.vector {
Inline(pool, chunk) => Inline(pool.clone(), chunk.clone()),
Single(pool, chunk) => Single(pool.clone(), chunk.clone()),
Full(pool, tree) => Full(pool.clone(), tree.clone()),
},
}
}
}
impl<A: Clone + Debug> Debug for Vector<A> {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
f.debug_list().entries(self.iter()).finish()
}
}
#[cfg(not(has_specialisation))]
impl<A: Clone + PartialEq> PartialEq for Vector<A> {
fn eq(&self, other: &Self) -> bool {
self.len() == other.len() && self.iter().eq(other.iter())
}
}
#[cfg(has_specialisation)]
impl<A: Clone + PartialEq> PartialEq for Vector<A> {
default fn eq(&self, other: &Self) -> bool {
self.len() == other.len() && self.iter().eq(other.iter())
}
}
#[cfg(has_specialisation)]
impl<A: Clone + Eq> PartialEq for Vector<A> {
fn eq(&self, other: &Self) -> bool {
fn cmp_chunk<A>(left: &PoolRef<Chunk<A>>, right: &PoolRef<Chunk<A>>) -> bool {
(left.is_empty() && right.is_empty()) || PoolRef::ptr_eq(left, right)
}
if std::ptr::eq(self, other) {
return true;
}
match (&self.vector, &other.vector) {
(Single(_, left), Single(_, right)) => {
if cmp_chunk(left, right) {
return true;
}
self.iter().eq(other.iter())
}
(Full(_, left), Full(_, right)) => {
if left.length != right.length {
return false;
}
if cmp_chunk(&left.outer_f, &right.outer_f)
&& cmp_chunk(&left.inner_f, &right.inner_f)
&& cmp_chunk(&left.inner_b, &right.inner_b)
&& cmp_chunk(&left.outer_b, &right.outer_b)
&& (left.middle.is_empty() && right.middle.is_empty())
|| Ref::ptr_eq(&left.middle, &right.middle)
{
return true;
}
self.iter().eq(other.iter())
}
_ => self.len() == other.len() && self.iter().eq(other.iter()),
}
}
}
impl<A: Clone + Eq> Eq for Vector<A> {}
impl<A: Clone + PartialOrd> PartialOrd for Vector<A> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.iter().partial_cmp(other.iter())
}
}
impl<A: Clone + Ord> Ord for Vector<A> {
fn cmp(&self, other: &Self) -> Ordering {
self.iter().cmp(other.iter())
}
}
impl<A: Clone + Hash> Hash for Vector<A> {
fn hash<H: Hasher>(&self, state: &mut H) {
for i in self {
i.hash(state)
}
}
}
impl<A: Clone> Sum for Vector<A> {
fn sum<I>(it: I) -> Self
where
I: Iterator<Item = Self>,
{
it.fold(Self::new(), |a, b| a + b)
}
}
impl<A: Clone> Add for Vector<A> {
type Output = Vector<A>;
fn add(mut self, other: Self) -> Self::Output {
self.append(other);
self
}
}
impl<'a, A: Clone> Add for &'a Vector<A> {
type Output = Vector<A>;
fn add(self, other: Self) -> Self::Output {
let mut out = self.clone();
out.append(other.clone());
out
}
}
impl<A: Clone> Extend<A> for Vector<A> {
fn extend<I>(&mut self, iter: I)
where
I: IntoIterator<Item = A>,
{
for item in iter {
self.push_back(item)
}
}
}
impl<A: Clone> Index<usize> for Vector<A> {
type Output = A;
fn index(&self, index: usize) -> &Self::Output {
match self.get(index) {
Some(value) => value,
None => panic!(
"Vector::index: index out of bounds: {} < {}",
index,
self.len()
),
}
}
}
impl<A: Clone> IndexMut<usize> for Vector<A> {
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
match self.get_mut(index) {
Some(value) => value,
None => panic!("Vector::index_mut: index out of bounds"),
}
}
}
impl<'a, A: Clone> IntoIterator for &'a Vector<A> {
type Item = &'a A;
type IntoIter = Iter<'a, A>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<A: Clone> IntoIterator for Vector<A> {
type Item = A;
type IntoIter = ConsumingIter<A>;
fn into_iter(self) -> Self::IntoIter {
ConsumingIter::new(self)
}
}
impl<A: Clone> FromIterator<A> for Vector<A> {
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = A>,
{
let mut seq = Self::new();
for item in iter {
seq.push_back(item)
}
seq
}
}
impl<'s, 'a, A, OA> From<&'s Vector<&'a A>> for Vector<OA>
where
A: ToOwned<Owned = OA>,
OA: Borrow<A> + Clone,
{
fn from(vec: &Vector<&A>) -> Self {
vec.iter().map(|a| (*a).to_owned()).collect()
}
}
impl<'a, A: Clone> From<&'a [A]> for Vector<A> {
fn from(slice: &[A]) -> Self {
slice.iter().cloned().collect()
}
}
impl<A: Clone> From<Vec<A>> for Vector<A> {
fn from(vec: Vec<A>) -> Self {
vec.into_iter().collect()
}
}
impl<'a, A: Clone> From<&'a Vec<A>> for Vector<A> {
fn from(vec: &Vec<A>) -> Self {
vec.iter().cloned().collect()
}
}
pub struct Iter<'a, A> {
focus: Focus<'a, A>,
front_index: usize,
back_index: usize,
}
impl<'a, A: Clone> Iter<'a, A> {
fn new(seq: &'a Vector<A>) -> Self {
Iter {
focus: seq.focus(),
front_index: 0,
back_index: seq.len(),
}
}
fn from_focus(focus: Focus<'a, A>) -> Self {
Iter {
front_index: 0,
back_index: focus.len(),
focus,
}
}
}
impl<'a, A: Clone> Iterator for Iter<'a, A> {
type Item = &'a A;
fn next(&mut self) -> Option<Self::Item> {
if self.front_index >= self.back_index {
return None;
}
#[allow(unsafe_code)]
let focus: &'a mut Focus<'a, A> = unsafe { &mut *(&mut self.focus as *mut _) };
let value = focus.get(self.front_index);
self.front_index += 1;
value
}
fn size_hint(&self) -> (usize, Option<usize>) {
let remaining = self.back_index - self.front_index;
(remaining, Some(remaining))
}
}
impl<'a, A: Clone> DoubleEndedIterator for Iter<'a, A> {
fn next_back(&mut self) -> Option<Self::Item> {
if self.front_index >= self.back_index {
return None;
}
self.back_index -= 1;
#[allow(unsafe_code)]
let focus: &'a mut Focus<'a, A> = unsafe { &mut *(&mut self.focus as *mut _) };
focus.get(self.back_index)
}
}
impl<'a, A: Clone> ExactSizeIterator for Iter<'a, A> {}
impl<'a, A: Clone> FusedIterator for Iter<'a, A> {}
pub struct IterMut<'a, A> {
focus: FocusMut<'a, A>,
front_index: usize,
back_index: usize,
}
impl<'a, A> IterMut<'a, A>
where
A: Clone,
{
fn new(seq: &'a mut Vector<A>) -> Self {
let focus = seq.focus_mut();
let len = focus.len();
IterMut {
focus,
front_index: 0,
back_index: len,
}
}
fn from_focus(focus: FocusMut<'a, A>) -> Self {
IterMut {
front_index: 0,
back_index: focus.len(),
focus,
}
}
}
impl<'a, A> Iterator for IterMut<'a, A>
where
A: 'a + Clone,
{
type Item = &'a mut A;
fn next(&mut self) -> Option<Self::Item> {
if self.front_index >= self.back_index {
return None;
}
#[allow(unsafe_code)]
let focus: &'a mut FocusMut<'a, A> = unsafe { &mut *(&mut self.focus as *mut _) };
let value = focus.get_mut(self.front_index);
self.front_index += 1;
value
}
fn size_hint(&self) -> (usize, Option<usize>) {
let remaining = self.back_index - self.front_index;
(remaining, Some(remaining))
}
}
impl<'a, A> DoubleEndedIterator for IterMut<'a, A>
where
A: 'a + Clone,
{
fn next_back(&mut self) -> Option<Self::Item> {
if self.front_index >= self.back_index {
return None;
}
self.back_index -= 1;
#[allow(unsafe_code)]
let focus: &'a mut FocusMut<'a, A> = unsafe { &mut *(&mut self.focus as *mut _) };
focus.get_mut(self.back_index)
}
}
impl<'a, A: Clone> ExactSizeIterator for IterMut<'a, A> {}
impl<'a, A: Clone> FusedIterator for IterMut<'a, A> {}
pub struct ConsumingIter<A> {
vector: Vector<A>,
}
impl<A: Clone> ConsumingIter<A> {
fn new(vector: Vector<A>) -> Self {
Self { vector }
}
}
impl<A: Clone> Iterator for ConsumingIter<A> {
type Item = A;
fn next(&mut self) -> Option<Self::Item> {
self.vector.pop_front()
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.vector.len();
(len, Some(len))
}
}
impl<A: Clone> DoubleEndedIterator for ConsumingIter<A> {
fn next_back(&mut self) -> Option<Self::Item> {
self.vector.pop_back()
}
}
impl<A: Clone> ExactSizeIterator for ConsumingIter<A> {}
impl<A: Clone> FusedIterator for ConsumingIter<A> {}
pub struct Chunks<'a, A> {
focus: Focus<'a, A>,
front_index: usize,
back_index: usize,
}
impl<'a, A: Clone> Chunks<'a, A> {
fn new(seq: &'a Vector<A>) -> Self {
Chunks {
focus: seq.focus(),
front_index: 0,
back_index: seq.len(),
}
}
}
impl<'a, A: Clone> Iterator for Chunks<'a, A> {
type Item = &'a [A];
fn next(&mut self) -> Option<Self::Item> {
if self.front_index >= self.back_index {
return None;
}
#[allow(unsafe_code)]
let focus: &'a mut Focus<'a, A> = unsafe { &mut *(&mut self.focus as *mut _) };
let (range, value) = focus.chunk_at(self.front_index);
self.front_index = range.end;
Some(value)
}
}
impl<'a, A: Clone> DoubleEndedIterator for Chunks<'a, A> {
fn next_back(&mut self) -> Option<Self::Item> {
if self.front_index >= self.back_index {
return None;
}
self.back_index -= 1;
#[allow(unsafe_code)]
let focus: &'a mut Focus<'a, A> = unsafe { &mut *(&mut self.focus as *mut _) };
let (range, value) = focus.chunk_at(self.back_index);
self.back_index = range.start;
Some(value)
}
}
impl<'a, A: Clone> FusedIterator for Chunks<'a, A> {}
pub struct ChunksMut<'a, A> {
focus: FocusMut<'a, A>,
front_index: usize,
back_index: usize,
}
impl<'a, A: Clone> ChunksMut<'a, A> {
fn new(seq: &'a mut Vector<A>) -> Self {
let len = seq.len();
ChunksMut {
focus: seq.focus_mut(),
front_index: 0,
back_index: len,
}
}
}
impl<'a, A: Clone> Iterator for ChunksMut<'a, A> {
type Item = &'a mut [A];
fn next(&mut self) -> Option<Self::Item> {
if self.front_index >= self.back_index {
return None;
}
#[allow(unsafe_code)]
let focus: &'a mut FocusMut<'a, A> = unsafe { &mut *(&mut self.focus as *mut _) };
let (range, value) = focus.chunk_at(self.front_index);
self.front_index = range.end;
Some(value)
}
}
impl<'a, A: Clone> DoubleEndedIterator for ChunksMut<'a, A> {
fn next_back(&mut self) -> Option<Self::Item> {
if self.front_index >= self.back_index {
return None;
}
self.back_index -= 1;
#[allow(unsafe_code)]
let focus: &'a mut FocusMut<'a, A> = unsafe { &mut *(&mut self.focus as *mut _) };
let (range, value) = focus.chunk_at(self.back_index);
self.back_index = range.start;
Some(value)
}
}
impl<'a, A: Clone> FusedIterator for ChunksMut<'a, A> {}
#[cfg(any(test, feature = "proptest"))]
#[doc(hidden)]
pub mod proptest {
#[deprecated(
since = "14.3.0",
note = "proptest strategies have moved to im::proptest"
)]
pub use crate::proptest::vector;
}
#[cfg(test)]
mod test {
use super::*;
use crate::proptest::vector;
use ::proptest::collection::vec;
use ::proptest::num::{i32, usize};
use ::proptest::proptest;
#[test]
fn macro_allows_trailing_comma() {
let vec1 = vector![1, 2, 3];
let vec2 = vector![1, 2, 3,];
assert_eq!(vec1, vec2);
}
#[test]
fn indexing() {
let mut vec = vector![0, 1, 2, 3, 4, 5];
vec.push_front(0);
assert_eq!(0, *vec.get(0).unwrap());
assert_eq!(0, vec[0]);
}
#[test]
fn large_vector_focus() {
let input = Vector::from_iter(0..100_000);
let vec = input.clone();
let mut sum: i64 = 0;
let mut focus = vec.focus();
for i in 0..input.len() {
sum += *focus.index(i);
}
let expected: i64 = (0..100_000).sum();
assert_eq!(expected, sum);
}
#[test]
fn large_vector_focus_mut() {
let input = Vector::from_iter(0..100_000);
let mut vec = input.clone();
{
let mut focus = vec.focus_mut();
for i in 0..input.len() {
let p = focus.index_mut(i);
*p += 1;
}
}
let expected: Vector<i32> = input.into_iter().map(|i| i + 1).collect();
assert_eq!(expected, vec);
}
#[test]
fn issue_55_fwd() {
let mut l = Vector::new();
for i in 0..4098 {
l.append(Vector::unit(i));
}
l.append(Vector::unit(4098));
assert_eq!(Some(&4097), l.get(4097));
assert_eq!(Some(&4096), l.get(4096));
}
#[test]
fn issue_55_back() {
let mut l = Vector::unit(0);
for i in 0..4099 {
let mut tmp = Vector::unit(i + 1);
tmp.append(l);
l = tmp;
}
assert_eq!(Some(&4098), l.get(1));
assert_eq!(Some(&4097), l.get(2));
let len = l.len();
l.slice(2..len);
}
#[test]
fn issue_55_append() {
let mut vec1 = Vector::from_iter(0..92);
let vec2 = Vector::from_iter(0..165);
vec1.append(vec2);
}
#[test]
fn issue_70() {
let mut x = Vector::new();
for _ in 0..262 {
x.push_back(0);
}
for _ in 0..97 {
x.pop_front();
}
for &offset in &[160, 163, 160] {
x.remove(offset);
}
for _ in 0..64 {
x.push_back(0);
}
match x.vector {
VectorInner::Full(_, ref tree) => {
assert_eq!(129, tree.middle.len());
assert_eq!(3, tree.middle.number_of_children());
}
_ => unreachable!(),
}
x.push_back(0);
match x.vector {
VectorInner::Full(_, ref tree) => {
assert_eq!(131, tree.middle.len());
assert_eq!(3, tree.middle.number_of_children())
}
_ => unreachable!(),
}
for _ in 0..64 {
x.push_back(0);
}
for _ in x.iter() {}
}
#[test]
fn issue_67() {
let mut l = Vector::unit(4100);
for i in (0..4099).rev() {
let mut tmp = Vector::unit(i);
tmp.append(l);
l = tmp;
}
assert_eq!(4100, l.len());
let len = l.len();
let tail = l.slice(1..len);
assert_eq!(1, l.len());
assert_eq!(4099, tail.len());
assert_eq!(Some(&0), l.get(0));
assert_eq!(Some(&1), tail.get(0));
}
#[test]
fn issue_74_simple_size() {
use crate::nodes::rrb::NODE_SIZE;
let mut x = Vector::new();
for _ in 0..(CHUNK_SIZE
* (
1
+ (2 * NODE_SIZE)
+ 1
+ 1
))
{
x.push_back(0u32);
}
let middle_first_node_start = CHUNK_SIZE;
let middle_second_node_start = middle_first_node_start + NODE_SIZE * CHUNK_SIZE;
x.remove(middle_second_node_start);
x.push_back(0u32);
match x.vector {
VectorInner::Full(_, tree) => {
assert_eq!(3, tree.middle.number_of_children());
assert_eq!(
2 * NODE_SIZE * CHUNK_SIZE + CHUNK_SIZE - 1,
tree.middle.len()
);
}
_ => unreachable!(),
}
}
#[test]
fn issue_77() {
let mut x = Vector::new();
for _ in 0..44 {
x.push_back(0);
}
for _ in 0..20 {
x.insert(0, 0);
}
x.insert(1, 0);
for _ in 0..441 {
x.push_back(0);
}
for _ in 0..58 {
x.insert(0, 0);
}
x.insert(514, 0);
for _ in 0..73 {
x.push_back(0);
}
for _ in 0..10 {
x.insert(0, 0);
}
x.insert(514, 0);
}
#[test]
fn issue_105() {
let mut v = Vector::new();
for i in 0..270_000 {
v.push_front(i);
}
while !v.is_empty() {
v = v.take(v.len() - 1);
}
}
#[test]
fn issue_107_split_off_causes_overflow() {
let mut vec = Vector::from_iter(0..4289);
let mut control = Vec::from_iter(0..4289);
let chunk = 64;
while vec.len() >= chunk {
vec = vec.split_off(chunk);
control = control.split_off(chunk);
assert_eq!(vec.len(), control.len());
assert_eq!(control, vec.iter().cloned().collect::<Vec<_>>());
}
}
#[test]
fn collect_crash() {
let _vector: Vector<i32> = (0..5953).collect();
}
#[test]
fn issue_116() {
let vec = Vector::from_iter(0..300);
let rev_vec: Vector<u32> = vec.clone().into_iter().rev().collect();
assert_eq!(vec.len(), rev_vec.len());
}
proptest! {
#[test]
fn iter(ref vec in vec(i32::ANY, 0..1000)) {
let seq: Vector<i32> = Vector::from_iter(vec.iter().cloned());
for (index, item) in seq.iter().enumerate() {
assert_eq!(&vec[index], item);
}
assert_eq!(vec.len(), seq.len());
}
#[test]
fn push_front_mut(ref input in vec(i32::ANY, 0..1000)) {
let mut vector = Vector::new();
for (count, value) in input.iter().cloned().enumerate() {
assert_eq!(count, vector.len());
vector.push_front(value);
assert_eq!(count + 1, vector.len());
}
let input2 = Vec::from_iter(input.iter().rev().cloned());
assert_eq!(input2, Vec::from_iter(vector.iter().cloned()));
}
#[test]
fn push_back_mut(ref input in vec(i32::ANY, 0..1000)) {
let mut vector = Vector::new();
for (count, value) in input.iter().cloned().enumerate() {
assert_eq!(count, vector.len());
vector.push_back(value);
assert_eq!(count + 1, vector.len());
}
assert_eq!(input, &Vec::from_iter(vector.iter().cloned()));
}
#[test]
fn pop_back_mut(ref input in vec(i32::ANY, 0..1000)) {
let mut vector = Vector::from_iter(input.iter().cloned());
assert_eq!(input.len(), vector.len());
for (index, value) in input.iter().cloned().enumerate().rev() {
match vector.pop_back() {
None => panic!("vector emptied unexpectedly"),
Some(item) => {
assert_eq!(index, vector.len());
assert_eq!(value, item);
}
}
}
assert_eq!(0, vector.len());
}
#[test]
fn pop_front_mut(ref input in vec(i32::ANY, 0..1000)) {
let mut vector = Vector::from_iter(input.iter().cloned());
assert_eq!(input.len(), vector.len());
for (index, value) in input.iter().cloned().rev().enumerate().rev() {
match vector.pop_front() {
None => panic!("vector emptied unexpectedly"),
Some(item) => {
assert_eq!(index, vector.len());
assert_eq!(value, item);
}
}
}
assert_eq!(0, vector.len());
}
#[test]
fn split(ref vec in vec(i32::ANY, 1..2000), split_pos in usize::ANY) {
let split_index = split_pos % (vec.len() + 1);
let mut left = Vector::from_iter(vec.iter().cloned());
let right = left.split_off(split_index);
assert_eq!(left.len(), split_index);
assert_eq!(right.len(), vec.len() - split_index);
for (index, item) in left.iter().enumerate() {
assert_eq!(& vec[index], item);
}
for (index, item) in right.iter().enumerate() {
assert_eq!(&vec[split_index + index], item);
}
}
#[test]
fn append(ref vec1 in vec(i32::ANY, 0..1000), ref vec2 in vec(i32::ANY, 0..1000)) {
let mut seq1 = Vector::from_iter(vec1.iter().cloned());
let seq2 = Vector::from_iter(vec2.iter().cloned());
assert_eq!(seq1.len(), vec1.len());
assert_eq!(seq2.len(), vec2.len());
seq1.append(seq2);
let mut vec = vec1.clone();
vec.extend(vec2);
assert_eq!(seq1.len(), vec.len());
for (index, item) in seq1.into_iter().enumerate() {
assert_eq!(vec[index], item);
}
}
#[test]
fn iter_mut(ref input in vector(i32::ANY, 0..10000)) {
let mut vec = input.clone();
{
for p in vec.iter_mut() {
*p = p.overflowing_add(1).0;
}
}
let expected: Vector<i32> = input.clone().into_iter().map(|i| i.overflowing_add(1).0).collect();
assert_eq!(expected, vec);
}
#[test]
fn focus(ref input in vector(i32::ANY, 0..10000)) {
let mut vec = input.clone();
{
let mut focus = vec.focus_mut();
for i in 0..input.len() {
let p = focus.index_mut(i);
*p = p.overflowing_add(1).0;
}
}
let expected: Vector<i32> = input.clone().into_iter().map(|i| i.overflowing_add(1).0).collect();
assert_eq!(expected, vec);
}
#[test]
fn focus_mut_split(ref input in vector(i32::ANY, 0..10000)) {
let mut vec = input.clone();
fn split_down(focus: FocusMut<'_, i32>) {
let len = focus.len();
if len < 8 {
for p in focus {
*p = p.overflowing_add(1).0;
}
} else {
let (left, right) = focus.split_at(len / 2);
split_down(left);
split_down(right);
}
}
split_down(vec.focus_mut());
let expected: Vector<i32> = input.clone().into_iter().map(|i| i.overflowing_add(1).0).collect();
assert_eq!(expected, vec);
}
#[test]
fn chunks(ref input in vector(i32::ANY, 0..10000)) {
let output: Vector<_> = input.leaves().flatten().cloned().collect();
assert_eq!(input, &output);
let rev_in: Vector<_> = input.iter().rev().cloned().collect();
let rev_out: Vector<_> = input.leaves().rev().map(|c| c.iter().rev()).flatten().cloned().collect();
assert_eq!(rev_in, rev_out);
}
#[test]
fn chunks_mut(ref mut input_src in vector(i32::ANY, 0..10000)) {
let mut input = input_src.clone();
#[allow(clippy::map_clone)]
let output: Vector<_> = input.leaves_mut().flatten().map(|v| *v).collect();
assert_eq!(input, output);
let rev_in: Vector<_> = input.iter().rev().cloned().collect();
let rev_out: Vector<_> = input.leaves_mut().rev().map(|c| c.iter().rev()).flatten().cloned().collect();
assert_eq!(rev_in, rev_out);
}
}
}