Files
addr2line
adler
aho_corasick
ansi_term
atty
backtrace
base64
bincode
bitflags
bitmaps
bstr
byteorder
bytes
bytesize
cargo
cargo_platform
cfg_if
chrono
clap
color_backtrace
corpus_database
corpus_database_dsl
corpus_extractor
corpus_manager
corpus_manager_driver
corpus_queries_derive
corpus_queries_impl
crates_index
crates_io
crc32fast
crossbeam_queue
crossbeam_utils
crypto_hash
csv
csv_core
curl
curl_sys
darling
darling_core
darling_macro
datafrog
datapond
datapond_derive
datapond_macro
either
encoding_rs
env_logger
error_chain
failure
failure_derive
filetime
flate2
fnv
foreign_types
foreign_types_shared
form_urlencoded
fs2
futures
futures_channel
futures_core
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
stream
task
getrandom
gimli
git2
git2_curl
glob
globset
h2
hashbrown
heck
hex
home
http
http_body
httparse
httpdate
humantime
hyper
hyper_tls
ident_case
idna
ignore
im_rc
indexmap
iovec
ipnet
itertools
itoa
jobserver
lazy_static
lazycell
libc
libgit2_sys
libnghttp2_sys
libssh2_sys
libz_sys
lock_api
log
log_derive
matches
maybe_uninit
memchr
mime
miniz_oxide
mio
mio_uds
native_tls
nix
num_cpus
num_integer
num_traits
object
once_cell
opener
openssl
openssl_probe
openssl_sys
parking_lot
parking_lot_core
percent_encoding
pest
pin_project
pin_project_lite
pin_utils
ppv_lite86
print_stats
proc_macro2
proc_macro_error
proc_macro_error_attr
proc_macro_hack
proc_macro_nested
quick_error
quote
rand
rand_chacha
rand_core
rand_xoshiro
regex
regex_automata
regex_syntax
remove_dir_all
reqwest
rustc
rustc_demangle
rustc_hash
rustc_workspace_hack
rustfix
rustwide
ryu
same_file
scopeguard
semver
semver_parser
serde
serde_derive
serde_ignored
serde_json
serde_urlencoded
shell_escape
signal_hook_registry
simplelog
sized_chunks
slab
smallvec
socket2
strip_ansi_escapes
strsim
structopt
structopt_derive
syn
synstructure
tar
tempdir
tempfile
termcolor
textwrap
thiserror
thiserror_impl
thread_local
time
tinyvec
tinyvec_macros
tokio
future
io
loom
macros
net
park
runtime
sync
task
time
util
tokio_executor
tokio_io
tokio_native_tls
tokio_process
tokio_reactor
tokio_signal
tokio_stream
tokio_sync
tokio_util
toml
tower_service
tracing
tracing_core
tracing_futures
try_lock
typenum
ucd_trie
unicode_bidi
unicode_normalization
unicode_segmentation
unicode_width
unicode_xid
url
utf8parse
vec_map
vte
walkdir
want
xattr
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The Cauchy distribution.
#![allow(deprecated)]
#![allow(clippy::all)]

use crate::distributions::Distribution;
use crate::Rng;
use std::f64::consts::PI;

/// The Cauchy distribution `Cauchy(median, scale)`.
///
/// This distribution has a density function:
/// `f(x) = 1 / (pi * scale * (1 + ((x - median) / scale)^2))`
#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Cauchy {
    median: f64,
    scale: f64,
}

impl Cauchy {
    /// Construct a new `Cauchy` with the given shape parameters
    /// `median` the peak location and `scale` the scale factor.
    /// Panics if `scale <= 0`.
    pub fn new(median: f64, scale: f64) -> Cauchy {
        assert!(scale > 0.0, "Cauchy::new called with scale factor <= 0");
        Cauchy { median, scale }
    }
}

impl Distribution<f64> for Cauchy {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
        // sample from [0, 1)
        let x = rng.gen::<f64>();
        // get standard cauchy random number
        // note that π/2 is not exactly representable, even if x=0.5 the result is finite
        let comp_dev = (PI * x).tan();
        // shift and scale according to parameters
        let result = self.median + self.scale * comp_dev;
        result
    }
}

#[cfg(test)]
mod test {
    use super::Cauchy;
    use crate::distributions::Distribution;

    fn median(mut numbers: &mut [f64]) -> f64 {
        sort(&mut numbers);
        let mid = numbers.len() / 2;
        numbers[mid]
    }

    fn sort(numbers: &mut [f64]) {
        numbers.sort_by(|a, b| a.partial_cmp(b).unwrap());
    }

    #[test]
    fn test_cauchy_averages() {
        // NOTE: given that the variance and mean are undefined,
        // this test does not have any rigorous statistical meaning.
        let cauchy = Cauchy::new(10.0, 5.0);
        let mut rng = crate::test::rng(123);
        let mut numbers: [f64; 1000] = [0.0; 1000];
        let mut sum = 0.0;
        for i in 0..1000 {
            numbers[i] = cauchy.sample(&mut rng);
            sum += numbers[i];
        }
        let median = median(&mut numbers);
        println!("Cauchy median: {}", median);
        assert!((median - 10.0).abs() < 0.4); // not 100% certain, but probable enough
        let mean = sum / 1000.0;
        println!("Cauchy mean: {}", mean);
        // for a Cauchy distribution the mean should not converge
        assert!((mean - 10.0).abs() > 0.4); // not 100% certain, but probable enough
    }

    #[test]
    #[should_panic]
    fn test_cauchy_invalid_scale_zero() {
        Cauchy::new(0.0, 0.0);
    }

    #[test]
    #[should_panic]
    fn test_cauchy_invalid_scale_neg() {
        Cauchy::new(0.0, -10.0);
    }
}